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COMMON FIXED POINTS FOR A COUNTABLE
FAMILY OF NON-SELF MULTI-VALUED MAPPINGS

ON METRICALLY CONVEX SPACES

Yong-jie Piao*

Abstract. In this paper, we will consider some existence theorems
of common fixed points for a countable family of non-self multi-
valued mappings defined on a closed subset of a complete metri-
cally convex space, and give more generalized common fixed point
theorems for a countable family of single-valued mappings. The
main results in this paper generalize and improve many common
fixed point theorems for single valued or multi-valued mappings
with contractive type conditions.

1. Introduction

There are many fixed point theorems for a single-valued self map of
a closed subset of a Banach space. However, in many applications, the
mapping under considerations is a not self-mapping of a closed subset.
Assad ([2]) gave a sufficient condition for such single valued mapping
to obtain a fixed point by proving a fixed point theorem for Kannan
mappings on a Banach space and putting certain boundary conditions
on mapping. Similar results for multi-valued mappings were obtained
by Assad ([1]) and Assad and Kirk ([3]). On the other hand, many au-
thors discussed common fixed point problems ([7-8, 12, 14]) for finite
single or multi-valued mappings on a complete 2-metric convex space or
a complete cone metric space. And some authors also discussed com-
mon fixed point problems ([4-6, 9-11, 13]) for a countable family of
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self-single-valued mappings or non-self-single-valued mappings with cer-
tain boundary conditions on a metric space or a metrically convex space.
These results improve and generalize many previous works.

In this paper, we will discuss the existence problems of common fixed
points for a countable family of non-self multi-valued mappings defined
on a closed subset of a complete metrically convex space, and obtain
some interesting results. The main results in this paper generalize and
improve many common fixed point theorems for single valued or multi-
valued mappings with contractive type conditions.

Through this paper, (X, d) (or X) denotes a complete metric space.
Let bc(X) and k(X) denote the families of all bounded closed subsets
and compact subsets of X, respectively. Let H denote the Hausdorff
metric on bc(X), that is, for each A,B ∈ bc(X),

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y, A)
}

,

where d(x,A) = infy∈A{d(x, y)}.
Definition 1.1. [4-6] A metric space (X, d) is said to be metrically

convex, if for any x, y ∈ X with x 6= y, there exists z ∈ X such that
z 6= x, z 6= y and d(x, z) + d(z, y) = d(x, y).

Lemma 1.2. [3, 6] If K is a nonempty closed subset of a complete
metrically convex space (X, d), then for any x ∈ K and y /∈ K, there
exists z ∈ ∂K such that d(x, z) + d(z, y) = d(x, y).

The following Lemma can be found in [13].

Lemma 1.3. If X is a complete metric space and A,B ∈ bc(X), then

(i) For any ε > 0 and any a ∈ A, there exists b ∈ B such that
d(a, b) ≤ H(A, B) + ε;

(ii) For any β > 1 and any a ∈ A, there exists b ∈ B such that
d(a, b) ≤ βH(A,B);

(iii) If A,B ∈ k(X), then for any a ∈ A, there exists b ∈ B such that
d(a, b) ≤ H(A, B).

2. Main Theorems

We will discuss existence problems of common fixed points for a
countable family of non-self multi-valued mappings defined on a nonempty
closed subset of a complete metrically convex space, and give its gener-
alized results.
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Theorem 2.1. Let K be a nonempty closed subset of a complete
metrically convex space (X, d), {Ti : K → bc(X)}i∈N a countable family
of non-self set-valued mappings with nonempty values such that for any
i, j ∈ N with i 6= j, any x, y ∈ K and any u ∈ Tix, there exists v ∈ Tjy
satisfying

d(u, v) ≤ λui,j(x, y),(2.1)

where
ui,j(x, y) ∈

{
d(x, y), d(x, Tix), d(y, Tjy), d(x,Tix)+d(y,Tjy)

2 ,
d(x,Tjy)+d(y,Tix)

2

}
,

and λ ∈ (0, 1
2) is a constant number. Furthermore, if Ti(x) ⊂ K for all

i ∈ N and x ∈ ∂K, then {Ti}i∈N has a common fixed point in K. If the
condition (2.1) holds for all u ∈ Tix and v ∈ Tjy, then {Ti}i∈N has a
unique common fixed point in K.

Proof. Take x0 ∈ K. We will construct two sequences {xn} and {x′n}
in the following way. Take an element x′1 ∈ T1x0. If x′1 ∈ K, then put
x1 = x′1; if x′1 /∈ K, then by Lemma 1.2 there exists x1 ∈ ∂K such that

d(x0, x1) + d(x1, x
′
1) = d(x0, x

′
1).

For x′1 ∈ T1x0, there exists x′2 ∈ T2x1 satisfying the condition (2.1). If
x′2 ∈ K, then put x2 = x′2; if x′2 /∈ K, then by Lemma 1.2 there exists
x2 ∈ ∂K such that

d(x1, x2) + d(x2, x
′
2) = d(x1, x

′
2).

Continuing this way, we will obtain {xn} and {x′n} as follows:
(i) let x′1 ∈ T1x0 and for each x′n ∈ Tnxn−1, there exists x′n+1 ∈

Tn+1xn satisfying the condition (2.1) for all n > 1;
(ii) if x′n ∈ K, then put xn = x′n;
(iii) if x′n /∈ K, then by Lemma 1.2 there exists xn ∈ ∂K such that

d(xn−1, xn) + d(xn, x′n) = d(xn−1, x
′
n).

Let P = {xi ∈ {xn} : xi = x′i} and Q = {xi ∈ {xn} : xi 6= x′i}. If
there exists n ∈ N such that xn ∈ Q, then xn−1 and xn+1 ∈ P. If fact,
if xn−1 ∈ Q, then xn−1 6= x′n−1. Hence xn−1 ∈ ∂K and x′n−1 /∈ K. So
by the given boundary condition, we have that x′n ∈ Tnxn−1 ⊂ K. On
the other hand, since xn ∈ Q, hence xn ∈ ∂K and x′n /∈ K which is a
contradiction. Similarly, we can prove that xn+1 ∈ P .

If x′1 = x0, then x′1 = x0 is a common fixed point of {Ti}i∈N, that is
x′1 ∈ Tjx

′
1, for all j ∈ N. In fact, for x′1 ∈ T1x0, there exists v ∈ Tjx0
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(j 6= 1) satisfying (2.1), i.e., d(x′1, v) ≤ λu1,j(x0, x0),

where, u1,j(x0, x0) ∈
{

d(x0, x0), d(x0, T1x0), d(x0, Tjx0),

d(x0, T1x0) + d(x0, Tjx0)
2

,
d(x0, Tjx0) + d(x0, T1x0)

2

}

=
{

0, d(x0, Tjx0),
d(x0, Tjx0)

2

}
.

If u1,j(x0, x0) = 0, then d(x0, v) ≤ 0 and so v = x0.
If u1,j(x0, x0) = d(x0, Tjx0), then d(x0, v) ≤ λd(x0, Tjx0), and hence

d(x0, v) ≤ λd(x0, v).

Since 0 < λ < 1, we have d(x0, v) = 0, and therefore v = x0.
If u1,j(x0, x0) = d(x0,Tjx0)

2 , then d(x0, v) ≤ λ
2d(x0, Tjx0). Conse-

quently we have d(x0, v) ≤ λ
2d(x0, v). Since 0 < λ < 1, d(x0, v) = 0, and

so v = x0.
In any case, we obtain that v = x0, and so x0 ∈ Tjx0 for all j ∈ N.

This means that x0 is a common fixed point of {Ti}i∈N. By the above
fact, we can suppose that

x′n ∈ Tnxn−1 and x′n 6= xn−1, n = 2, 3, · · ·
By the properties of P and Q, we can estimate d(xn, xn+1) into three
cases:

Case I. Suppose xn, xn+1 ∈ P . Then we have

xn = x′n ∈ Tnxn−1 and xn+1 = x′n+1 ∈ Tn+1xn.

Hence we get by (2.1) that

d(xn, xn+1) = d(x′n, x′n+1) ≤ λun,n+1(xn−1, xn),

where, un,n+1(xn−1, xn) ∈
{

d(xn−1, xn), d(xn−1, Tnxn−1), d(xn, Tn+1xn),

d(xn−1, Tnxn−1) + d(xn, Tn+1xn)
2

,
d(xn−1, Tn+1xn) + d(xn, Tnxn−1)

2

}
.

If un,n+1(xn−1, xn) = d(xn−1, xn), then

d(xn, xn+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn−1, Tnxn−1), then

d(xn, xn+1) ≤ λd(xn−1, Tnxn−1).

Since xn ∈ Tnxn−1, we have

d(xn, xn+1) ≤ λd(xn−1, xn).
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If un,n+1(xn−1, xn) = d(xn, Tn+1xn), then

d(xn, xn+1) ≤ λd(xn, Tn+1xn).

Since xn+1 ∈ Tn+1xn, we obtain

d(xn, xn+1) ≤ λd(xn, xn+1),

and therefore d(xn, xn+1) = 0 since λ < 1, so we have

d(xn, xn+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn−1,Tnxn−1)+d(xn,Tn+1xn)
2 , then we have

d(xn, xn+1) ≤ λ

2
[d(xn−1, xn) + d(xn, xn+1)]

≤ λ

2
d(xn−1, xn) +

1
2
d(xn, xn+1).

Consequently we obtain that

d(xn, xn+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn−1,Tn+1xn)+d(xn,Tnxn−1)
2 , then we have

d(xn, xn+1) ≤ λ

2
d(xn−1, xn+1) ≤ λ

2
[d(xn−1, xn) + d(xn, xn+1)]

≤ λ

2
d(xn−1, xn) +

1
2
d(xn, xn+1)

Hence we obtain that

d(xn, xn+1) ≤ λd(xn−1, xn).

Consequently we have

d(xn, xn+1) ≤ λd(xn−1, xn) for all n ∈ N.

Case II. Suppose xn ∈ P and xn+1 ∈ Q. Then we have

xn = x′n ∈ Tnxn−1 and xn+1 6= x′n+1 ∈ Tn+1xn.

Hence by (2.1), we get

d(xn, x′n+1) = d(x′n, x′n+1) ≤ λun,n+1(xn−1, xn),

where, un,n+1(xn−1, xn) ∈
{

d(xn−1, xn), d(xn−1, Tnxn−1), d(xn, Tn+1xn),

d(xn−1, Tnxn−1) + d(xn, Tn+1xn)
2

,
d(xn−1, Tn+1xn) + d(xn, Tnxn−1)

2

}
.

If un,n+1(xn−1, xn) = d(xn−1, xn), then

d(xn, x′n+1) ≤ λd(xn−1, xn).
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Since d(xn, xn+1) + d(xn+1, x
′
n+1) = d(xn, x′n+1), we have

d(xn, xn+1) ≤ d(xn, x′n+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn−1, Tnxn−1), then

d(xn, x′n+1) ≤ λd(xn−1, Tnxn−1) ≤ λd(xn−1, xn).

Since d(xn, xn+1) + d(xn+1, x
′
n+1) = d(xn, x′n+1), we have

d(xn, xn+1) ≤ d(xn, x′n+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn, Tn+1xn), then

d(xn, x′n+1) ≤ λd(xn, Tn+1xn) ≤ λd(xn, x′n+1).

Since λ < 1, we have d(xn, x′n+1) = 0 and so d(xn, xn+1) = 0. Hence we
have

d(xn, xn+1) ≤ d(xn, x′n+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn−1,Tnxn−1)+d(xn,Tn+1xn)
2 , then

d(xn, x′n+1) ≤
λ

2
[d(xn−1, Tnxn−1) + d(xn, Tn+1xn)]

≤ λ

2
[d(xn−1, xn) + d(xn, x′n+1)]

≤ λ

2
d(xn−1, xn) +

1
2
d(xn, x′n+1).

So we have

d(xn, xn+1) ≤ d(xn, x′n+1) ≤ λd(xn−1, xn).

If un,n+1(xn−1, xn) = d(xn−1,Tn+1xn)+d(xn,Tnxn−1)
2 , then

d(xn, x′n+1) ≤
λ

2
[d(xn−1, Tn+1xn) + d(xn, Tnxn−1)]

≤ λ

2
d(xn−1, x

′
n+1) ≤

λ

2
[d(xn−1, xn) + d(xn, x′n+1)]

≤ λ

2
d(xn−1, xn) +

1
2
d(xn, x′n+1).

So we have

d(xn, xn+1) ≤ d(xn, x′n+1) ≤ λd(xn−1, xn).

Consequently, we have

d(xn, xn+1) ≤ d(xn, x′n+1) ≤ λd(xn−1, xn) for all n ∈ N.
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Case III. Suppose xn ∈ Q and xn+1 ∈ P . Then we have xn−1 ∈ P by
the property of P and Q, and so xn 6= x′n ∈ Tnxn−1 and xn+1 = x′n+1 ∈
Tn+1xn. By (2.1), we get

d(x′n, xn+1) = d(x′n, x′n+1) ≤ λun,n+1(xn−1, xn),

where, un,n+1(xn−1, xn) ∈
{

d(xn−1, xn), d(xn−1, Tnxn−1), d(xn, Tn+1xn),

d(xn−1, Tnxn−1) + d(xn, Tn+1xn)
2

,
d(xn−1, Tn+1xn) + d(xn, Tnxn−1)

2

}
.

Here we will give two properties:
(a) d(xn−1, xn) + d(xn, x′n) = d(xn−1, x

′
n) since xn ∈ Q.

(b) since d(xn, xn+1) ≤ d(xn, x′n) + d(x′n, xn+1)
≤ d(xn−1, xn) + d(xn, x′n) + d(x′n, xn+1)
= d(xn−1, x

′
n) + d(x′n, xn+1).

So we have

d(xn, xn+1)− d(xn−1, x
′
n) ≤ d(x′n, xn+1).

If un,n+1(xn−1, xn) = d(xn−1, xn), then

d(x′n, xn+1) ≤ λd(xn−1, xn).

Hence by (b), we have

d(xn, xn+1)− d(xn−1, x
′
n) ≤ λd(xn−1, xn).

So by (a), we get

d(xn, xn+1) ≤ (1 + λ)d(xn−1, x
′
n).

By Case II, we have

d(xn, xn+1) ≤ λ(1 + λ)d(xn−2, xn−1).

If un,n+1(xn−1, xn) = d(xn−1, Tnxn−1), then

d(x′n, xn+1) ≤ λd(xn−1, Tnxn−1) ≤ λd(xn−1, x
′
n).

Hence by (b) and Case II, we obtain

d(xn, xn+1) ≤ λ(1 + λ)d(xn−2, xn−1).

If un,n+1(xn−1, xn) = d(xn, Tn+1xn), then

d(x′n, xn+1) ≤ λd(xn, Tn+1xn) ≤ λd(xn, xn+1).

By (b), we get
(1− λ)d(xn, xn+1) ≤ d(xn−1, x

′
n).
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So by Case II again, we obtain

d(xn, xn+1) ≤ λ

(1− λ)
d(xn−2, xn−1).

If un,n+1(xn−1, xn) = d(xn−1,Tnxn−1)+d(xn,Tn+1xn)
2 , then

d(x′n, xn+1) ≤ λ

2
[d(xn−1, Tnxn−1) + d(xn, Tn+1xn)]

≤ λ

2
[d(xn−1, x

′
n) + d(xn, xn+1)].

By (b), we obtain

d(xn, xn+1)− d(xn−1, x
′
n) ≤ λ

2
[d(xn−1, x

′
n) + d(xn, xn+1)].

Hence

d(xn, xn+1) ≤ 2 + λ

2− λ
d(xn−1, x

′
n),

and so by Case II again, we obtain that

d(xn, xn+1) ≤ (2 + λ)λ
2− λ

d(xn−2, xn−1).

If un,n+1(xn−1, xn) = d(xn−1,Tn+1xn)+d(xn,Tnxn−1)
2 , then

d(x′n, xn+1) ≤ λ

2
[d(xn−1, Tn+1xn) + d(xn, Tnxn−1)]

≤ λ

2
[d(xn−1, xn+1) + d(xn, x′n)]

≤ λ

2
[d(xn−1, xn) + d(xn, xn+1) + d(xn, x′n)].

Hence by (a) and (b), we have that

d(xn, xn+1)− d(xn−1, x
′
n) ≤ λ

2
[d(xn−1, x

′
n) + d(xn, xn+1)],

and so

d(xn, xn+1) ≤ 2 + λ

2− λ
d(xn−1, x

′
n).

By Case II, we obtain

d(xn, xn+1) ≤ (2 + λ)λ
2− λ

d(xn−2, xn−1).
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In any cases, we have

d(xn, xn+1) ≤ max
{

λ(1 + λ),
λ

1− λ
,
(2 + λ)λ

2− λ

}
d(xn−2, xn−1),

∀ n ∈ N, n ≥ 2.

So from Case I, Case II and Case III, we have

d(xn, xn+1) ≤ max
{

λ, λ(1 + λ),
λ

1− λ
,
(2 + λ)λ

2− λ

}

×max{d(xn−1, xn), d(xn−2, xn−1)}, ∀ n ∈ N, n ≥ 2.

It is easy to check that

max
{

λ, λ(1 + λ),
λ

1− λ
,
(2 + λ)λ

2− λ

}
=

λ

1− λ
,

and
d(xn, xn+1) ≤ hmax

{
d(xn−1, xn), d(xn−2, xn−1)

}

for all n ∈ N, n ≥ 2, where h = λ
1−λ . Clearly h is an increasing function

on λ ∈ (0, 1), and h < 1 if and only if λ ∈ (0, 1
2). Hence we know that

0 < h < 1 and we have

d(xn, xn+1) ≤ h
n
2
−1 max{d(x2, x1), d(x1, x0)},

for all n ∈ N and n ≥ 2. Let δ = h−1 max{d(x2, x1), d(x1, x0)}. Then
for m > n ≥ N ≥ 2,

d(xn, xm) ≤ Σm−1
i=n d(xi, xi+1) ≤ Σ∞i=Nd(xi, xi+1) ≤ Σ∞i=N

(
h

1
2

)i
δ.

Hence {xn}n∈N is a Cauchy sequence. Since X is complete, {xn} has
a limit x∗. But K is closed and xn ∈ K for all n ∈ N, and hence
x∗ ∈ K. By the properties of P and Q, we can see that there exists
an infinite subsequence {xnk+1} of {xn} such that xnk+1 ∈ P , and so
xnk+1 = x′nk+1 ∈ Tnk+1xnk

.

Now we prove that x∗ is a common fixed point of {Ti}i∈N. In fact,
for any fixed i ∈ N, we can take k large enough such that nk > i and
xnk+1 ∈ P . For xnk+1 = x′nk+1 ∈ Tnk+1xnk

, there exists v ∈ Tix
∗

satisfying (2.1), i.e.,

d(xnk+1, v) = d(x′nk+1, v) ≤ λunk+1,i(xnk
, x∗),

where, unk+1,i(xnk
, x∗) ∈

{
d(xnk

, x∗), d(xnk
, Tnk+1xnk

), d(x∗, Tix
∗),

d(xnk
, Tnk+1xnk

) + d(x∗, Tix
∗)

2
,
d(xnk

, Tix
∗) + d(x∗, Tnk+1xnk

)
2

}
.
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If unk+1,i(xnk
, x∗) = d(xnk

, x∗), then

d(xnk+1, v) = d(x′nk+1, v) ≤ λd(xnk
, x∗).

Let k → ∞. Then d(x∗, v) ≤ λd(x∗, x∗) = 0, and so d(x∗, v) = 0, that
is, v = x∗.

If unk+1,i(xnk
, x∗) = d(xnk

, Tnk+1xnk
), then

d(xnk+1, v) = d(x′nk+1, v) ≤ λd(xnk
, Tnk+1xnk

) ≤ λd(xnk
, xnk+1).

Let k → ∞. Then d(x∗, v) ≤ λd(x∗, x∗) = 0, and so d(x∗, v) = 0, that
is, v = x∗.

If unk+1,i(xnk
, x∗) = d(x∗, Tix

∗), then

d(xnk+1, v) = d(x′nk+1, v) ≤ λd(x∗, Tix
∗) ≤ d(x∗, v).

Let k →∞. Then d(x∗, v) ≤ λd(x∗, v), and so d(x∗, v) = 0 since λ < 1,
so v = x∗.

If unk+1,i(xnk
, x∗) = d(xnk

,Tnk+1xnk
)+d(x∗,Tix

∗)
2 , then

d(xnk+1, v) ≤ λ

2
[d(xnk

, Tnk+1xnk
) + d(x∗, Tix

∗)]

≤ λ

2
[d(xnk

, xnk+1) + d(x∗, v)].

Let k →∞. Then d(x∗, v) ≤ λ
2d(x∗, v), and so d(x∗, v) = 0 since λ < 1,

so v = x∗.
If unk+1,i(xnk

, x∗) = d(xnk
,Tix

∗)+d(x∗,Tnk+1xnk
)

2 , then

d(xnk+1, v) ≤ λ

2
[d(xnk

, Tix
∗) + d(x∗, Tnk+1xnk

)]

≤ λ

2
[d(xnk

, v) + d(x∗, xnk+1)].

Let k →∞. Then d(x∗, v) ≤ λ
2d(x∗, v), and so d((x∗, v) = 0 since λ < 1,

so v = x∗.
In any cases, we have that v = x∗, and so x∗ ∈ Tix

∗. This means
that x∗ is a common fixed point of {Ti}i∈N.

If the condition (2.1) holds for all i, j ∈ N with i 6= j, x, y ∈ K,
u ∈ Tix and v ∈ Tjy, then {Ti}i∈N has a unique common fixed point.
In fact, If x∗ and y∗ are all common fixed points of {Ti}i∈N in K, then
since x∗ ∈ T1x

∗ and y∗ ∈ T2y
∗, we have that

d(x∗, y∗) ≤ λu1,2(x∗, y∗),
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where, u1,2(x∗, y∗) ∈
{

d(x∗, y∗), d(x∗, T1x
∗), d(y∗, T2y

∗),

d(x∗, T1x
∗) + d(y∗, T2y

∗)
2

,
d(x∗, T2y

∗) + d(y∗, T1x
∗)

2

}
.

If u1,2(x∗, y∗) = d(x∗, y∗), then

d(x∗, y∗) ≤ λd(x∗, y∗),

and so d(x∗, y∗) = 0 since λ < 1. So x∗ = y∗.
If u1,2(x∗, y∗) = d(x∗, T1x

∗), then

d(x∗, y∗) ≤ λd(x∗, T1x
∗) ≤ λd(x∗, x∗) = 0,

and so x∗ = y∗.
If u1,2(x∗, y∗) = d(y∗, T2y

∗), then

d(x∗, y∗) ≤ λd(y∗, T2y
∗) ≤ λd(y∗, y∗) = 0,

and so x∗ = y∗.
If u1,2(x∗, y∗) = d(x∗,T1x∗)+d(y∗,T2y∗)

2 , then

d(x∗, y∗) ≤ λ

2
[d(x∗, T1x

∗) + d(y∗, T2y
∗)] ≤ λ

2
[d(x∗, x∗) + d(y∗, y∗)] = 0,

and so x∗ = y∗.
If u1,2(x∗, y∗) = d(x∗,T2y∗)+d(y∗,T1x∗)

2 , then

d(x∗, y∗) ≤ λ

2
[d(x∗, T2y

∗) + d(y∗, T1x
∗)]

≤ λ

2
[d(x∗, y∗) + d(y∗, x∗)]

= λd(x∗, y∗),

and d(x∗, y∗) = 0 since λ < 1. So x∗ = y∗.
Hence we know that x∗ = y∗ in any situation. So the common fixed

points of {Ti}i∈N are unique.

Remark 2.2. When {Ti}i∈N are all single mappings, the sequence
{x′n} can be constructed by the next way without using the condition
(2.1): x′n = Tnxn−1 for all n ≥ 1, see [9, 11]. Hence we can see that the
our technique here is very different from that in [9, 11], and I think this
is a new method.

From Theorem 2.1, we can easily obtain the following common fixed
point theorem for a countable family of non-self single-valued mappings
defined on a nonempty closed subset of a metrically convex space.
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Theorem 2.3. Let K be a nonempty closed subset of a complete
metrically convex space (X, d), {Ti : K → X}i∈N a countable family of
non-self single-valued mappings such that for any i, j ∈ N with i 6= j,
and any x, y ∈ K satisfies

d(Tix, Tjy) ≤ λui,j(x, y),(2.2)

where, ui,j(x, y) ∈ {d(x, y), d(x, Tix), d(y, Tjy),
d(x, Tix) + d(y, Tjy)

2
,

d(x, Tjy) + d(y, Tix)
2

}
and λ ∈ (0, 1

2) is a constant number. Furthermore, if Ti(x) ∈ K for all
i ∈ N and x ∈ ∂K, then {Ti}i∈N have a unique common fixed point in
K.

We can obtain the following more general common fixed point theo-
rem.

Theorem 2.4. Let K be a nonempty closed subset of a complete
metrically convex space (X, d), {Ti,j : X → X}i,j∈N a family of non-self
single-valued mappings, {mi,j}i,j∈N a family of positive integral numbers

such that there exists a constant number λ ∈ (0, 1
2) such that for each

x, y ∈ X and i1, i2, j ∈ N with i1 6= i2,

d(T
mi1,j

i1,j x, T
mi2,j

i2,j y) ≤ λui1,i2,j(x, y),(2.3)

where, ui1,i2,j(x, y) ∈ {d(x, y), d(x, T
mi1,j

i1,j x), d(y, T
mi2,j

i2,j y),
d(x,T

mi1,j
i1,j x)+d(y,T

mi2,j
i2,j y)

2 ,
d(x,T

mi2,j
i2,j y)+d(y,T

mi1,j
i1,j x)

2 }. Furthermore, suppose (a)

for each i, j ∈ N, T
mi,j

i,j (∂K) ⊂ K, (b) for each i1, i2, µ, ν ∈ N with µ 6= ν,

Ti1,µTi2,ν = Ti2,νTi1,µ. Then {Ti,j}i,j∈N has a unique common fixed point
in K.

Proof. Fix j ∈ N, and let Si,j = T
mi,j

i,j , then {Si,j}i∈N satisfies all of
the assumptions of Theorem 2.3. Hence {Si,j}i∈N has a unique common
fixed point pj in K. Now, we will prove that pj is also a unique common
fixed point of {Ti,j}i∈N. In fact, for any fixed i ∈ N,

Si,j(Ti,j(pj)) = T
mi,j

i,j (Ti,j(pj)) = Ti,j(T
mi,j

i,j (pj)) = Ti,j(Si,j(pj)) = Ti,j(pj).

This means that Ti,j(pj) is a fixed point of Si,j . For any k ∈ N with
k 6= i, we have

d(Ti,j(pj), Sk,j(Ti,j(pj))) = d(Si,j(Ti,j(pj)),
Sk,j(Ti,j(pj))) ≤ λui,k,j(Ti,j(pj), Ti,j(pj)),
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where,

ui,k,j(Ti,j(pj), Ti,j(pj))

∈
{

d(Ti,j(pj), Ti,j(pj)), d(Ti,j(pj), Si,j(Ti,j(pj))), d(Ti,j(pj), Sk,j(Ti,j(pj))),

d(Ti,j(pj), Si,j(Ti,j(pj))) + d(Ti,j(pj), Sk,j(Ti,j(pj)))
2

}

=
{

0, d(Ti,j(pj), Sk,j(Ti,j(pj))),
d(Ti,j(pj), Sk,j(Ti,j(pj)))

2

}
.

If ui,k,j(Ti,j(pj), Ti,j(pj)) = 0, then

d(Ti,j(pj), Sk,j(Ti,j(pj))) ≤ λ 0 = 0,

and hence d(Ti,j(pj), Sk,j(Ti,j(pj))) = 0, i.e,,Ti,j(pj) = Sk,j(Ti,j(pj)).
If ui,k,j(Ti,j(pj), Ti,j(pj)) = d(Ti,j(pj), Sk,j(Ti,j(pj))), then

d(Ti,j(pj), Sk,j(Ti,j(pj))) ≤ λ d(Ti,j(pj), Sk,j(Ti,j(pj))),

and so Ti,j(pj) = Sk,j(Ti,j(pj)).
If ui,k,j(Ti,j(pj), Ti,j(pj)) = d(Ti,j(pj),Sk,j(Ti,j(pj)))

2 , then

d(Ti,j(pj), Sk,j(Ti,j(pj))) ≤ λ

2
d(Ti,j(pj), Sk,j(Ti,j(pj))),

and so Ti,j(pj) = Sk,j(Ti,j(pj)). Hence in any situation, Ti,j(pj) is a
fixed point of Sk,j for each k with k 6= i. That is, Ti,j(pj) is a common
fixed point of {Si,j}i∈N. By the uniqueness of common fixed points of
{Si,j}i∈N, we have Ti,j(pj) = pj for each i ∈ N. Hence pj is a common
fixed point of {Ti,j}i∈N.

If uj and vj are all common fixed points of {Ti,j}i∈N, then they are
also common fixed points of {Si,j}i∈N. By the uniqueness of common
fixed points of {Si,j}i∈N, we obtain that ui = pj = vj . This means that
for each j ∈ N, {Ti,j}i∈N has a unique common fixed point pj .

Finally, we will prove that {Ti,j}i,j∈N has a unique common fixed
point. First, we prove that for each µ, ν ∈ N, pµ = pν . In fact, for any
i1, i2, µ, ν ∈ N with µ 6= ν, since Ti1,µ(pµ) = pµ and Ti2,ν(pν) = pν ,

Ti1,µ(Ti2,ν(pν)) = Ti1,µ(pν).

Hence by (b)

Ti2,ν(Ti1,µ(pν)) = Ti1,µ(Ti2,ν(pν)) = Ti1,µ(pν).

This means that Ti1,µ(pν) is a fixed point of Ti2,ν for each i2, i.e., Ti1,µ(pν)
is a common fixed point of {Ti2,ν}i2∈N. Since {Ti2,ν}i2∈N has a unique
common fixe point pν , we see that Ti1,µ(pν) = pν for each i1, and there-
fore pν is a common fixed point of {Ti1,µ}i1∈N. But {Ti1,µ}i1∈N has an
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unique common fixed point pµ, and so pµ = pν . Let p∗ = pj . Then p∗ is
the common fixed point of {Ti,j}i,j∈N. The uniqueness of common fixed
points of {Ti,j}i,j∈N is obvious.

From Theorem 2.1, we obtain next common fixed point theorem:

Theorem 2.5. Let K be a nonempty closed subset of a complete
metrically convex space (X, d), {Ti : K → k(X)}i∈N a countable family
of non-self set-valued mappings with nonempty values such that for any
i, j ∈ N with i 6= j, and any x, y ∈ K satisfies

H(Tix, Tiy) ≤ λui,j(x, y),(2.4)

where, ui,j(x, y) ∈
{

d(x, y), d(x, Tix), d(y, Tjy), d(x,Tix)+d(y,Tjy)
2 ,

d(x,Tjy)+d(y,Tix)
2

}
and λ ∈ (0, 1

2) is a constant number. Furthermore, if

Ti(x) ⊂ K for all i ∈ N and x ∈ ∂K, then {Ti}i∈N have a common fixed
point in K.

Proof. For any i, j ∈ N and any u ∈ Tix, by applying (iii) in Lemma
1.3, we can choose v ∈ Tjy such that d(u, v) ≤ H(Tix, Tjy). Hence (2.1)
in Theorem 2.1 holds by (2.4), So {Ti}i∈N has a common fixed point in
K by Theorem 2.1.
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