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COMMON FIXED POINTS FOR A COUNTABLE
FAMILY OF NON-SELF MULTI-VALUED MAPPINGS
ON METRICALLY CONVEX SPACES

YonNG-JIE P1ao*

ABSTRACT. In this paper, we will consider some existence theorems
of common fixed points for a countable family of non-self multi-
valued mappings defined on a closed subset of a complete metri-
cally convex space, and give more generalized common fixed point
theorems for a countable family of single-valued mappings. The
main results in this paper generalize and improve many common
fixed point theorems for single valued or multi-valued mappings
with contractive type conditions.

1. Introduction

There are many fixed point theorems for a single-valued self map of
a closed subset of a Banach space. However, in many applications, the
mapping under considerations is a not self-mapping of a closed subset.
Assad ([2]) gave a sufficient condition for such single valued mapping
to obtain a fixed point by proving a fixed point theorem for Kannan
mappings on a Banach space and putting certain boundary conditions
on mapping. Similar results for multi-valued mappings were obtained
by Assad ([1]) and Assad and Kirk ([3]). On the other hand, many au-
thors discussed common fixed point problems ([7-8, 12, 14]) for finite
single or multi-valued mappings on a complete 2-metric convex space or
a complete cone metric space. And some authors also discussed com-
mon fixed point problems ([4-6, 9-11, 13]) for a countable family of
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self-single-valued mappings or non-self-single-valued mappings with cer-
tain boundary conditions on a metric space or a metrically convex space.
These results improve and generalize many previous works.

In this paper, we will discuss the existence problems of common fixed
points for a countable family of non-self multi-valued mappings defined
on a closed subset of a complete metrically convex space, and obtain
some interesting results. The main results in this paper generalize and
improve many common fixed point theorems for single valued or multi-
valued mappings with contractive type conditions.

Through this paper, (X, d) (or X) denotes a complete metric space.
Let be(X) and k(X) denote the families of all bounded closed subsets
and compact subsets of X, respectively. Let H denote the Hausdorff
metric on be(X), that is, for each A, B € be(X),

H(A,B) = max{sgg d(z,B), sgg d(y, A)},
x y

where d(x, A) = infyca{d(z,y)}.

DEFINITION 1.1. [4-6] A metric space (X, d) is said to be metrically
conver, if for any x,y € X with x # y, there exists z € X such that
z#x, z#yand d(z,2) + d(z,y) = d(z,y).

LEMMA 1.2. [3, 6] If K is a nonempty closed subset of a complete
metrically convex space (X,d), then for any x € K and y ¢ K, there
exists z € OK such that d(z, z) + d(z,y) = d(z,y).

The following Lemma can be found in [13].

LEMMA 1.3. If X is a complete metric space and A, B € be(X), then

(i) For any € > 0 and any a € A, there exists b € B such that
d(a,b) < H(A,B) +¢;
(ii) For any > 1 and any a € A, there exists b € B such that
d(a,b) < BH(A, B);
(iii) If A, B € k(X), then for any a € A, there exists b € B such that
d(a,b) < H(A,B).

2. Main Theorems

We will discuss existence problems of common fixed points for a
countable family of non-self multi-valued mappings defined on a nonempty
closed subset of a complete metrically convex space, and give its gener-
alized results.
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THEOREM 2.1. Let K be a nonempty closed subset of a complete
metrically convex space (X, d), {T; : K — bc(X)}ien a countable family
of non-self set-valued mappings with nonempty values such that for any
i,7 € Nwithi # j, any x,y € K and any u € T;z, there exists v € Tjy
satisfying

(2.1) d(u,v) < A j(x,y),

where

wis(z.y) € {d(z.y). dla, Tia), d(y, Tyy), Leleidul) delm ol |,
and A € (0,1) is a constant number. Furthermore, if T(z) C K for all
i € N and x € 0K, then {T;};en has a common fixed point in K. If the
condition (2.1) holds for all u € Tjxz and v € Tjy, then {T;},cn has a
unique common fixed point in K.

Proof. Take g € K. We will construct two sequences {x,} and {z],}
in the following way. Take an element x} € Thxg. If 2] € K, then put
x1 = a}; if 2} ¢ K, then by Lemma 1.2 there exists x1 € K such that

d(zo, 1) + d(x1,2)) = d(zo, 7).

For 2 € Thzo, there exists zf, € Thx satisfying the condition (2.1). If
xh € K, then put zp = x5; if 25, ¢ K, then by Lemma 1.2 there exists
z9 € OK such that

d(ﬂj‘l,ﬂj‘g) + d($27$/2) = d(xlvxé)

Continuing this way, we will obtain {z,,} and {z/,} as follows:

(i) let 2} € Tywg and for each z, € T,x,_1, there exists z],_ , €
Th+12y, satisfying the condition (2.1) for all n > 1;

(i) if 2], € K, then put =, = z/;

(iii) if #], ¢ K, then by Lemma 1.2 there exists z,, € 0K such that
d(n—1,2p) + d(zn, 73) = d(Tp-1,23,).

Let P = {x; € {zp} : @i = 2/} and Q = {z; € {an} : z; # 2}}. If
there exists n € N such that x,, € @, then z,_1 and z,41 € P. If fact,
if x,—1 € Q, then x,,_1 # ],_;. Hence z,_; € 0K and z|,_; ¢ K. So
by the given boundary condition, we have that a}, € T,z,—1 C K. On
the other hand, since z, € @, hence z,, € 0K and z, ¢ K which is a
contradiction. Similarly, we can prove that x,11 € P.

If 2} = g, then z} = z¢ is a common fixed point of {7;};en, that is
zy € Tz, for all j € N. In fact, for 2} € Tizo, there exists v € Tjzg
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(j # 1) satisfying (2.1), i.e., d(z],v) < Auy (o, xo),
where, wuy j(zo,20) € {d(xo,xo),d(xg,Tlxo),d(xo,zjo),

d(.iv[), Tlxo) + d((L’o, T]xo) d(.CC[), T]JIo) + d(.CC[), Tlxo) }
2 ’ 2
d(xo, T
:{O7d($07zj0)7 (950,23330)}_
If wy j(zo, o) = 0, then d(zg,v) <0 and so v = xo.
If uy (o, zo) = d(z0, Tjx0), then d(zo,v) < Ad(xo,Tjxo), and hence

d(xo,v) < Ad(zo,v).

Since 0 < A < 1, we have d(xg,v) = 0, and therefore v = xy.

If uy j(zo,z0) = M? then d(zg,v) < %d(xo,zjo). Conse-

quently we have d(zg,v) < %d(wo, v). Since 0 < A < 1, d(xg,v) = 0, and
S0 v = Tg.

In any case, we obtain that v = xg, and so x¢ € Tjxq for all j € N.
This means that z is a common fixed point of {T;};cn. By the above
fact, we can suppose that

2 € Thrp_y and 2}, # 21, n=2,3,- -

By the properties of P and @, we can estimate d(zy,Z,+1) into three
cases:
Case 1. Suppose zy, xp+1 € P. Then we have

Ty = a:’n € Thaxn—1 and Ty = 55%4—1 € Thy1%n.
Hence we get by (2.1) that

d(xnv wn-{—l) = d(x;w x;LJrl) < )\un,n+1(a?n_1, x”)’

Where, un,n-{—l(xn—lv xn) € {d(.%'n_l, xn)7 d<xn—17 Tn‘rn—l)v d(.%'n, Tn—l—lxn),

d(n—1, Tntn—1) + d(@n, Tni12n) d(Tn—1, Tni12n) + d(Tp, Tpn—1) }
2 ’ 2 .
If up pt1(xn—1,2n) = d(xn—1,2,), then
d(xn’ xn—i—l) < )\d(l‘n—lv xn)
If un,n—i—l(«rn—l: mn) = d($n—17 Tnxn—l)v then

d(xnv mn-{—l) < )\d(‘rn—l? Tnxn—l)-

Since x,, € T,x,_1, we have

d($n7 xn+1) < )\d(xnfla wn)
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If wp i1 (@n—1,2n) = d(xn, Thy17y), then
d(zp, Tnt1) < Md(zp, Tht12n).
Since Tp4+1 € Tht1Tn, We obtain
d(Zn, Tnt1) < Ad(Zn, Tnt1),
and therefore d(x,,, zn4+1) = 0 since A < 1, so we have
d(Tpn, Tnt1) < Md(zp—1,Tp).

1 TaTn T
If g g1 (@1, @) = St Tnn o) 2d@nTosin) - hon we have

d(xnal'nJrl) < [d(fl;n*lal’n) + d(xnaanrl)]

>N >

1
< *d(xnfla xn) + §d(wn7 xn+1)-

\V)

Consequently we obtain that

d<wn7 xn—i—l) < )\d(xn—lv xn)

d(xnfl7Tn+1$n)+d(zn7Tnmn71)
2

If Up g1 (-1, Tn) = , then we have

>

A

d(l'ny xn+1) < *d(xnfla $n+1) < E[d(xnfla l‘n) + d(xna anrl)]

> N

< *d(xnfla mn) + d($n7$n+l)

[\
N | =

Hence we obtain that
d(Xn, Tpt1) < Ad(Tp—1, Tp).
Consequently we have
d(Zp, Tni1) < Ad(zp—1,2y) for all n € N.
Case II. Suppose x, € P and z,+1 € Q). Then we have
rp =, € Tpwp_q and T,41 # $;L+1 € Thy12n.
Hence by (2.1), we get

d(l‘n, x;z-i-l) = d(l‘;“ :U;H-l) < )\Un,n+1(l'n71, l‘n),

where, un,n-{—l(wn—la xn) € {d(mn—la .an), d(xn—l) Tnxn—l)v d(IL’n, Tn—l—l'fn)a
d($n717 Tnxnfl) + d(ZUnv Tn+1l‘n) d(.’L’n,h Tn+1xn) + d(.’En, Tn:vn*l) }
2 ’ 2 '
If up pt1(Tn—1,n) = d(xp—1,x,), then

d(zn, x;z—f—l) < Ad(@p-1, ).
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Since d(xp, Zni1) + d(Tng1, 2, 1) = d(Tn, T, ), we have
d(Tp, Tnt1) < d(a:n,x;Hl) < M(zp—1,p).
If up pt1(xn—1,2n) = d(@n—1, Tnan—1), then
d(xp, 24 1) < A(@p—1, Tptp—1) < Ad(Tp—1, Ty).
Since d(zp, Tni1) + d(Tng1, 2, 1) = d(zn, x, ), we have
A(@n, Tpt1) < d(Tp, 204 1) < Ad(Tp—1, Ty).
If up pt1(@n—1,2n) = d(xn, Tny12y), then
An, 1) < M(n, Tos1n) < Ad(n,2ly)

Since A < 1, we have d(z,,,x,,,) = 0 and so d(zy, Zn41) = 0. Hence we
have

d(xn,xn—i-l) < d(l'mx;H.l) < Ad(JUn—laxn)-

n— 7T n— 7Tn
If g g1 (@1, @) = DEnmtTntn )b Tsitn) oo

A
d(xn, 35{@4_1) < §[d($n717 Tnxnfl) + d(ZUna Tn+l$n)]
A
< §[d($n,1, Ty) + d(2n, x{n—i—l)]
A 1
< §d(l‘n71, xn) + §d(xn>${n+1)'
So we have
d(l'rnl'n—i-l) < d($n7x;1+1) < )\d(xn—la'xn)-
If up pt1(Tn—1,2n) = d(m"’l’T"*lx”;er(r"’T"x"*l), then
A
d(xn) x;+1) < §[d(l‘n—17 Tn+1xn) + d(xny Tnxn—l)]
A / A /
< §d($n71,$n+1) < E[d(ﬂfnflaﬂﬁn) + d(Tp, 75 41)]
1
< %d(xnfla xn) + §d($n, xfn,+1)-

So we have
d(Tp, Tnt1) < d(xn»x;H-l) < Ad(zn—1, Zn).
Consequently, we have

d(xp, Tpg1) < d(zn, 25 1) < Ad(zp—1,2,) for all n € N.
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Case III. Suppose x,, € @ and z, 1 € P. Then we have z,_1 € P by
the property of P and @, and so x,, # x;, € Tp@yp—1 and Ty41 = 7,4 €
Th+12y. By (2.1), we get

d($;17 xn-i—l) = d(x;” 37/n+1) < )\Un,n—&—l(xn—l, $n)7

where, Un,n+1(xn—17xn) S {d(xn—laxn)7d($n—17Tn$n—1)ad(xnaTn—Hxn)y
d(xn—la Tnxn—l) + d(xny Tn—&-lxn) d(xn—la Tn—i—lxn) + d(xnv Tnxn—l) }
2 ’ 2 '
Here we will give two properties:
(a) d(xp—1,2n) + d(xp, x}) = d(xn_1,2)) since z, € Q.

< d(xn, xp) + d(x;,, Tpi1)
< d(xnfly xn) + d(ﬂjna -T;@) + d(x;, anrl)

Tp_1,20) +d(z), Tni1)-

(b) since d(xp, Tnt1) <

So we have
d(Tn, Tns1) — d(@n_1, 7)) < d(x),, Tpi1).
If up pt1(xn—1,2n) = d(xn—1,2,), then
d(z), n1) < Md(xp_1,x5).
Hence by (b), we have
d(zp, Tni1) — d(Tp_1,2)) < Md(xp_1, 7).
So by (a), we get
d(Tn, Tne1) < (1+ Nd(zp_1,,).
By Case II, we have
d(xn, Tnt1) < A1+ N d(xp—2,2p—1).
If wp i1 (@n—1,2n) = d(xpn—1, Thrn—_1), then
d(z), xns1) < Md(xp_1, Tnzn_1) < Ad(Tn_1,2,).
Hence by (b) and Case II, we obtain
d(Zp, Trnt1) < ML+ N)d(xp—2,Tn-1).
If up pt1(@n—1,2n) = d(xy, Tny12y), then
d(z), 2na1) < Md(xp, Try17n) < Md(2p, i)

By (b), we get
(1 = Nd(zn, Tns1) < d(Tn—1,2},).
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So by Case II again, we obtain

A

md(xn_g, .CCn_l).

d(.’L‘n, xn—l—l) S

d(@n—1,Tnwn—1)+d(@n,T;
Ity 1 (201, ) = HEntTntnms ) bdln T o) ghen

d(x,n’ xn—i—l) < [d(l'n—lv Tnxn—l) + d(fL‘n7 Tn—&-lxn)]

| > N >

< [d($n71,$,’n) + d(ﬁﬂn,anrl)]'

By (b), we obtain

A
d(Tp, Tpi1) — d(wn—lvwln) < §[d(xn—17x/n) + d(wp, Tng1)]-

Hence

24+ A ,
< — _
d(x’mxn-‘rl) =9 )\d(xn 17xn)7

and so by Case II again, we obtain that

(24 M)A
2\

If g1 (@1, @) = QnetTnetZn 2 Tntn 1) oo

A
d('x;z’ xn—i—l) < §[d(1’n—17 Tn—&—l-rn) + d<mm Tnxn—lﬂ

A
< §[d(wn—17 mn—l—l) + d(x’m x;)]
A
< §[d(xn—17 xn) + d(ﬂ?n, xn—&—l) + d((L‘n, 'rln)]

Hence by (a) and (b), we have that

d(])n,$n+1) < d(xn—27$n—1)-

A
(T, Tpt1) — d(Tp-1,27,) < §[d(zn,1,$%) + d(2n, Tnt1)],

and so
24+ A ;
< — _ .
d(Tn, Tpt1) < 5_ )\d(mn 1, %)
By Case II, we obtain
2+ M)A

d(l‘naxn—i-l) < d($n727l’nfl)-

2—-A
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In any cases, we have

A 24 A
d(xp, Tpt1) < max{)\(l + ), T ( 5 _/\)

VneNn>2

)\}d(xn_z,wn—ﬁ,

So from Case I, Case II and Case III, we have
A (24 )\))\}
B
x max{d(zp—1,2n),d(Tpn-2,2n-1)}, VneNmn>2

d(xp, Tpt1) < max{/\, A1+ X)

It is easy to check that

max{/\,/\(l—i—)\), - A (2+A)A} A

- 2= 1-)
and
d(l‘n, In—&—l) <h max{d(xn—lv xn)u d(xn—% mn—l)}
for all » € N;n > 2, where h = ﬁ Clearly h is an increasing function

on A € (0,1), and h < 1 if and only if A € (0,%). Hence we know that
0 < h <1 and we have

d(p, Tpt1) < pa~t max{d(x2, 1), d(z1,x0)},

for all n € Nand n > 2. Let § = h~ ! max{d(z2,71),d(z1,70)}. Then
form>n>N > 2,

d(an, o) < S5 d(@s wi01) < T2 yd(a 2in) < T2y () 6

Hence {x,}nen is a Cauchy sequence. Since X is complete, {zy} has
a limit «*. But K is closed and x, € K for all n € N, and hence
x* € K. By the properties of P and (), we can see that there exists
an infinite subsequence {x,, 11} of {x,} such that x,, +; € P, and so
Lng+1 = xgzk—&-l € Ty 41Tny,-

Now we prove that * is a common fixed point of {7T;};en. In fact,
for any fixed i € N, we can take k large enough such that ny > i and
Tnp+1 € P. For x,, 41 = xﬁlﬁl € Ty, 41Ty, there exists v € Tix*
satisfying (2.1), i.e.,

d(xnkJrlv v) = d(x:zk—i-l’ U) < )‘unkJrl,i(mnkvm*)v

Where? unk-‘rl,i(xnka JI*) € {d(.’lﬂ'nk,.’lf*), d(mnk,Tnk+1$nk), d(IE*, ﬂm*)a

d(xn,, Tn+12n,) + d(a*, Tix*) d(zp,, Tix*) + d(z*, Ty, +12n,) }
2 ’ 2 '
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If upy+1,i(n,, %) = d(zp,, 2*), then
d(xnk+lav) = d(x;zk—&—lav) < )‘d('rnk?x*)'

Let k — oo. Then d(z*,v) < Ad(z*,2*) = 0, and so d(z*,v) = 0, that
is, v = x*.
If Uy 41,i(Tn,, %) = d(zp,, Tn,+1%n, ), then

d(xnk-i-hv) = d(xiz,ﬁrl?v) < )\d(xnk7Tnk+1$nk) < Ad(xnwwnk-i-l)'

Let k — oo. Then d(z*,v) < Ad(z*,z*) = 0, and so d(z*,v) = 0, that
is, v = x*.
If wpy41,i(Tn,, z*) = d(z*, T;x*), then
d(xnkJrlaU) = d(l{nk—l—bv) < )\d(l‘*,ﬂiﬁ*) < d(ZL‘*,’L)).
Let k — oo. Then d(z*,v) < Ad(z*,v), and so d(z*,v) = 0 since A < 1,
sov =x".

d(xp, T, Tp,. )+d(x*T;x*
If unk+1,i($nk7x*> — (@ny, ngtl gk) ( i )7 then

A
2

d(xnk-‘rlvv) < [d(xannk-i-lxnk) +d(x*7T1x*)]

A
< Z
-2

[d(‘rnk ) xnk‘f'l) =+ d(x*’ U)]

Let k — oco. Then d(z*,v) < %d(m*,v), and so d(z*,v) = 0 since A < 1,
so v =z*.
d(:vnk,Tiar*)+d(a:*,Tnk+1a:nk)

If Uy 41,i(Tn,, 2%) = 5 , then
)\ * *
d(mnk+17v) < §[d($nk7n$ )+ d(x ’TnkJrlxnk)]
A .
< §[d(l‘nk7?j) + d(x ’xnkJrl)]-
Let k — oo. Then d(z*,v) < 3d(z*,v), and so d((z*,v) = 0 since A < 1,

so v = x*.

In any cases, we have that v = z*, and so z* € T;x*. This means
that z* is a common fixed point of {T;}en.

If the condition (2.1) holds for all 7,57 € N with ¢« # j, =,y € K,
u € Tjxz and v € Ty, then {T;};cn has a unique common fixed point.
In fact, If * and y* are all common fixed points of {T}};en in K, then
since z* € Tix* and y* € Tyy*, we have that

(", y*) < Auaa(e”,y7),
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Where? U1,2($*ay*) € {d(x*ay*)7d<37*7T133*)’d(y*7T2y*)’
d(z*, Thvz*) + d(y*, Toy*) d(z*, Toy") +d(y*, Thz") }
2 ’ 2 ’
If uy 2(2*, y*) = d(z*, y*), then
d(z*,y") < Md(x",y"),

and so d(x*,y*) = 0 since A < 1. So z* = y*.
If uy o(z*, y*) = d(z*, T1x*), then

d(z*,y*) < Ad(x*, Thz*) < Md(x*,2™) =0,

and so xz* = y*.
If uy 2(z*, y*) = d(y*, Toy*), then

d(z*,y*) < M(y*, Toy™) < Md(y*,y") =0,

and so z* = y*.

If wyp(z*,y*) = d(m*’Tlx*)Jgrd(y*’Tw*), then

< Sld(z", 2%) +d(y", 7)) = 0,

A A
d(z”,y") < $ld(@”, Tiz") +d(y", Tay") < 5

and so z* = y*.

If uyp(z*,y*) = d(m*’sz*);d(y*’m*), then

< Sld("y") +d(y", =)

= )\d(l‘*, y*)a

N> N >

and d(z*,y*) = 0 since A < 1. So z* = y*.
Hence we know that * = y* in any situation. So the common fixed
points of {7} };cn are unique. O

REMARK 2.2. When {T;};en are all single mappings, the sequence
{z!,} can be constructed by the next way without using the condition
(2.1): z], = Tyxp— for all n > 1, see [9, 11]. Hence we can see that the
our technique here is very different from that in [9, 11], and I think this
is a new method.

From Theorem 2.1, we can easily obtain the following common fixed
point theorem for a countable family of non-self single-valued mappings
defined on a nonempty closed subset of a metrically convex space.
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THEOREM 2.3. Let K be a nonempty closed subset of a complete
metrically convex space (X,d), {T; : K — X };en a countable family of
non-self single-valued mappings such that for any i,j7 € N with ¢ # j,
and any x,y € K satisfies

(2.2) d(Tiz, Tjy) < A, j(z,y),

d(z, Tiz) + d(y, Tjy)

2 )
d(x, Tyy) + d(y, Tix)

2 }
and A € (0,3) is a constant number. Furthermore, if Tj(z) € K for all

i € N and x € 0K, then {T;};cn have a unique common fixed point in
K.

Where; ui,j(xa y) € {d(.’E, y)’ d(ﬂj‘, EIL’), d(y7 T’]y)7

We can obtain the following more general common fixed point theo-
rem.

THEOREM 2.4. Let K be a nonempty closed subset of a complete
metrically convex space (X,d), {T;; : X — X} jen a family of non-self
single-valued mappings, {m; ; }: jen a family of positive integral numbers
such that there exists a constant number A € (0, %) such that for each
z,y € X and i1,42,7 € N with i1 # i9,

(2.3) AT 2, T2 y) < AUy g5 (2,Y),

i1,J » T,
iy, j Mig,j

where, u;, i, (2, y) € {d(z,y),d(x, T; " x),d(y, T;, 7"y),

d(z,T, "} ]x)+d(y7 L2y d(a,T 2 ]y)+d(y, )

}+. Furthermore, suppose (a)
for each i j eN, Tmi’j(aK) C K, (b) for each iy,i9, i, v € N with p # v,

Ty wTiy = Tiy T3, - Then {T; ;}; jen has a unique common fixed point
in K.

Proof. Fix j € N, and let S, ; = "7 then {Si ;}ien satisfies all of

Z7j
the assumptions of Theorem 2.3. Hence {S; j }ien has a unique common
fixed point p; in K. Now, we will prove that p; is also a unique common
fixed point of {7} ;}ien. In fact, for any fixed ¢ € N,

Si3(Tii(pi) = T;3" (Ti5(pi) = Tig (T} (93)) = T1,5(Sii (ps)) = Tij (p)-

This means that T j(p;) is a fixed point of S;;. For any k € N with
k # i, we have

d(TJ(p]) Sk,y( 7](p]))) d( w( 7J(p]))
Sk,i(Ti5(p5))) < Ak, (T (ps), Tij (),
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where,
w; k(11,5 (ps), Tij (ps)
€ {d(Tm (), T35 (py)), d(Ti5(pj), S (Ti5(py))), d(Ti (), Sk, (Tii (P5)))
d(Tij(ps), Si(Tij(p;))) JQr (T35 (Ps), Sk,y(1i,(py))) }

d(Ti,5(pj): Sk, (Ti i (ps))) }
. .

)
)

= {0,d(Ti,j(pj%Sk,j(Tz‘,j(pj))),
If wi ki (T5,5(pj), Tij(pj)) = 0, then
d(T;,5(pj)s Sk,;(Tij(pj))) < A0 =0,

and hence d(7; j(p;), Sk,;(Ti;(p;))) = 0, i.e,,T; j(pj) = Sk,j(Ti;(pj))-
If wi k(T (pj), Ti i (ps)) = d(T;,5(py), Sk, (Ti,5(pj))), then

d(T; j(pj), Sk, (Tij(ps))) < Xd(T;5(ps), Sk, (Tij(p5))),
and so T; j(p;) = Sk.; (T3, (pj))-
If w; (T, (py): Tig(py)) = d(Ti,;(p)»S ,j(Ti,j(Pj))), then

d(Ti,(pj)s Sk, (T1,5(p;))) < 5d(Ti,3(ps)s Sk (11,5 (ps))),

and so T;;(pj) = Sk;(Ti;(p;)). Hence in any situation, T;;(p;) is a
fixed point of Sy ; for each k with £ # 4. That is, T; ;(p;) is a common
fixed point of {S;;}ien. By the uniqueness of common fixed points of
{Si ;}ien, we have T; ;(p;) = p; for each i € N. Hence p; is a common
fixed point of {T; ; }ien.

If u; and v; are all common fixed points of {7} ;}ien, then they are
also common fixed points of {S;;}ien. By the uniqueness of common
fixed points of {S; ;}ien, we obtain that u; = p; = v;. This means that
for each j € N, {7} ;}ien has a unique common fixed point p;.

Finally, we will prove that {Tj;}; jen has a unique common fixed
point. First, we prove that for each pu,v € N, p, = p,. In fact, for any
i1,12, b, v € N with p # v, since Tj, ,(pp) = pu and Tj, ,(py) = pu,

Til,u(Tiz,V(pV)) = Tihu(pV)-

=

N>

Hence by (b)

Tiz,V(Til,u(pV)) = Til,u(Tiz,V(pV)) = Til,u(pu)'
This means that T;, ,,(p,) is a fixed point of Tj, ,, for each is, i.e., Tj, u(pv)
is a common fixed point of {7}, , }i,en. Since {T, . }i,en has a unique
common fixe point p,, we see that Til,u(py) = p, for each i1, and there-
fore p, is a common fixed point of {7}, ,}i;en. But {7}, ,}i en has an
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unique common fixed point p,, and so p, = p,. Let p* = p;. Then p* is
the common fixed point of {7} ;}; jen. The uniqueness of common fixed
points of {T; j}; jen is obvious. O

From Theorem 2.1, we obtain next common fixed point theorem:

THEOREM 2.5. Let K be a nonempty closed subset of a complete
metrically convex space (X,d), {T; : K — k(X)}ien a countable family
of non-self set-valued mappings with nonempty values such that for any
1,7 € N with i # j, and any z,y € K satisfies

(2.4) H(Tix, Tiy) < Mg j(z,y),

where, uij(z,) € {d(z,y), d(z, Tiw), d(y, Tyy), L8210,

W} and A € (0, %) is a constant number. Furthermore, if

T;(x) C K for alli € N and x € 0K, then {T;};cn have a common fixed
point in K.

Proof. For any i,7 € N and any u € T;x, by applying (iii) in Lemma
1.3, we can choose v € Ty such that d(u,v) < H(T;x,Tjy). Hence (2.1)
in Theorem 2.1 holds by (2.4), So {T}}ien has a common fixed point in
K by Theorem 2.1. O
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